梯形性质
1。梯形的上下两底平行;
2。梯形的中位线,平行于两底并且等于上下底和的一半;
梯形判定
1。一组对边平行,另一组对边不平行的四边形是梯形。
梯形特殊梯形
梯形等腰梯形
定义
两腰相等的梯形叫做等腰梯形(isosceles trapezium )
性质
1.等腰梯形的两条腰相等。
2.等腰梯形在同一底上的两个底角相等。
3.等腰梯形的两条对角线相等。
判定
①两腰相等的梯形是等腰梯形;
②同一底上的两个角相等的梯形是等腰梯形;
③对角线相等的梯形是等腰梯形。
梯形直角梯形
定义
一腰垂直于底的梯形叫直角梯形。
性质
1。直角梯形其中1个角是直角。
判定
有一个内角是直角的梯形是直角梯形。
梯形周长面积
梯形周长
梯形的周长公式:上底+下底+腰+腰,用字母表示:

梯形面积
①梯形的面积公式:(上底+下底)×高÷2, 用字母表示:

变形:h=2S÷(a+c);变形2:a=2s÷h-c;变形3:c=2s÷h-a。
②梯形的面积公式: 中位线×高,用字母表示:L·h。
③对角线互相垂直的梯形面积为:对角线×对角线÷2。
④只知四边长度时的面积公式:

梯形常用辅助线
1.作高(根据实际题目确定);
2.平移一腰;
3.平移对角线;
4.反向延长两腰交于一点;
5.取一腰中点,另一腰两端点连接并延长;
6.取两底中点,过一底中点做两腰的平行线。
梯形经典例题
梯形例 1
如图5,△ABC中,AB=AC,BD、CE分别为∠ABC、∠ACB的平分线。求证:四边形EBCD是等腰梯形。
分析:欲证四边形EBCD是等腰梯形,解题思路是证ED//BC,BE=CD,由已知条件易证△BCD≌△CBE得到EB=DC,从而AE=AD,运用等腰三角形的性质可证ED//BC。
证明:
∵AB=AC,
∴∠ABC=∠ACB,
∴∠DBC=∠ECB=1/2∠ABC,
∴△EBC≌△DCB(A。S。A),
∴BE=CD,
∴AB-BE=AC-CD,即AE=AD.
∴∠ABC=∠AED,∴ED//BC,
又∵EB与DC交于点A,即EB与DC不平行,
∴四边形EBCD是梯形,又BE=DC,
∴四边形EBCD是等腰梯形.
梯形例 2
如图6,已知四边形ABCD中,AB=DC,AC=DB,求证:四边形ABCD是等腰梯形。
证明:
过点A作AE∥DC交BC边于点E.
∵AB=CD,AC=DB,
∴△ABC≌△DCB,∴∠ABC=∠DCB
又∵AE∥DC,
∴∠AEB=∠DCB
∴∠ABC=∠AEB ,∴AB=AE,
∴四边形AECD是平行四边形.
∴AD∥BC.
又AB=DC,且AD≠BC,
∴四边形ABCD为等腰梯形.
提示:判定一个任意四边形为等腰梯形,如果不能直接运用等腰梯形的判定定理,一般的方法是通过作辅助线,将此四边形分解为熟悉的多边形,此例就是通过作平行线,将四边形分解成为一个平行四边形和一个等腰三角形
[6]
。
梯形例 3
如图7,P为等腰梯形ABCD的下底BC上一点,PM⊥AB,PN⊥CD,M,N为垂足,BE⊥CD,E为垂足.求证:BE=PM+PN.
证明:
过P点作PH⊥BE于点H.
∵BE⊥CD,PN⊥CD,
∴四边形PHEN是矩形.
∴HE=PN,EN∥PH.
∴∠BPH=∠C.
∵四边形ABCD为等腰梯形,
∴∠ABC=∠C.
∴∠MBP=∠HPB.
又∵PM⊥AB,BP公共,
∴Rt△MBP≌Rt△HPB.
∴PM=BH.
∴BE=BH+HE=PM+PN.
梯形例 4
如图8,在梯形ABCD中,AD∥BC,且AB=AD+BC,M为DC的中点.求证:AM⊥BM。
证明:
延长AM交BC的延长线于点N.∵M为DC中点,AD∥BC,
∴△ADM≌△NCM.
∴AD=CN,AM=MN.
∴AB=AD+BC=BN.
梯形例 5
如图9,梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=5cm,BD=12cm,求该梯形上下底的和.
解:
过D作DE∥AC交BC的延长线于点E.
∵AD∥CE,∴DE=AC=5cm,AD=CE.
∵AC⊥BD,
∴DE⊥BD.
在Rt△BDE中,
∴AD+BC=CE+BC=BE=13cm.
梯形例 6
如图10,在等腰梯形ABCD中,AD∥BC,AB=DC,且AC⊥BD,AF是梯形的高,梯形的面积是49cm2.求梯形的高。
解法1:
如图10(甲),过A作AE∥DB交CB的延长线于点E。
∵AC⊥BD,
∴AC⊥AE.
∵AD∥EB,
∴AE=BD,EB=AD.
又∵四边形ABCD是等腰梯形,
∴AC=BD.
∴AE=AC.
∴△AEC是等腰直角三角形.
又AF是斜边上的高,故AF也为斜边上的中线.
∴AF=7cm
解法2:
设梯形ABCD的两条对角线相交于O点,过O作OH⊥BC于点H,延长HO交AD于G点(如图10(乙)).
∵AD∥BC,
∴HG⊥AD.
∵AB=DC,AC=DB,BC公共,
∴△ABC≌△DCB.
∴∠2=∠1.
又∵AC⊥BD,
∴△BOC是等腰直角三角形。
∴同理.
∴以下解答过程与解法1相同。
解法3:
过D作DM⊥BC于点M(如图10(丙)).
∵梯形ABCD是等腰梯形,
∴AC=DB,∠ABC=∠DCB.
又∵AF=DM,
∴Rt△AFC≌Rt△DMB,
∴∠DBC=∠ACB.
又∵AC⊥BD,
∴∠DBM=∠ACF=45°.
∴△AFC和△DMB都是等腰直角三角形.AF=FC,DM=MB,
∴以下解答过程与解法1相同.
提示:本题的三种解法都是利用等腰直角三角形的性质或全等三角形的性质来证明该梯形的高就等于该梯形的中位线的长.因此,在等腰梯形中,若两条对角线垂直,则这个梯形的高就等于中位线的长,梯形的面积就等于高的平方
[6]
。
梯形例 7
如图11,在梯形ABCD中,AD//BC,AB=DC,点E,F,G分别在边AB,BC,CD上,且AE=GF=GC.
(1)求证四边形AEFG是平行四边形;
(2)当∠FGC=2∠EFB时,求证四边形AEFG是矩形.
分析:本题考查有关三角形、四边形的综合证明.涉及到等腰梯形的性质、平行四边形的判定与性质、等腰三角形的性质等.在解答过程中要注意证明格式、推理方式的规范化.
证明:
(1)∵在梯形ABCD中,AB=DC,
∴∠B=∠C.
∵GF=GC,∴∠C=∠GFC,
∴∠B=∠GFC
∴AB//GF,即AE//GF.
又∵AE=GF
∴四边形AEFG是平行四边形.
(2)解:过点G作GH⊥FC,垂足为H.
∵GF=GC,
∴∠FGH=1/2∠FGC.
∵∠FGC=2∠EFB
∴∠FGH=∠EFB.
∵∠FGH+∠GFH=90°
∴∠EFB+∠GFH=90°
∴∠EFG=90°
∵四边形AEFG是平行四边形,
∴四边形AEFG是矩形.
- 参考资料
-
- 1. 吴正宪,刘劲苓,刘克臣主编.小学数学教学基本概念解读:教育科学出版社,2014.09:275
- 2. 陈继辉,刘晓明. 梯形的其他性质浅论[J]. 初中生必读,2005,(Z2):40-42. [2017-08-28]. .知网[引用日期2017-08-28]
- 3. 张立红. 初中四边形教学研究[D].内蒙古师范大学,2012.
- 4. 吴远宏. 等腰梯形的一个性质及推广[J]. 中学生数学,2011,(14):21. [2017-08-28]. .知网[引用日期2017-08-28]
- 5. 姜坤崇. 直角梯形的两组有趣性质[J]. 中学数学,2010,(18):59-60. [2017-08-28]. .知网[引用日期2017-08-28]
- 6. 张哲财. 三线合一[J]. 中学生数学,2011,(02):3. [2017-08-28]. .知网[引用日期2017-08-28]